
The Three Body Problem
There’s more to building Silicon than what EDA tools currently help with.

Ben Marshall, PQShield
Bristol, UK

(ben.marshall@pqshield.com)

Peter Birch, VyperCore
Bristol, UK

(peter@vypercore.com)
Keywords—EDA; Tooling; Flows; Standardisation; Open Source;

I. INTRODUCTION

Electronic Design Automation (EDA) tooling facilitates the development of cutting edge technologies at the
nanometre scale, providing the means to rationalise an incredibly complex task into abstractions simple enough
to become second nature to an engineer. In a post-Moore’s Law environment, an increasing number of
companies are turning to bespoke Application-Specific Integrated Circuits (ASICs) to achieve the same
generational performance gains that consumers have come to expect. The extreme costs of a failed tape-out
rightly demands high levels of assurance from verification and physical analysis, leading to long development
timescales. From our personal experience (not to mention that of our colleagues), companies tend to develop
layers of internal tooling and processes around the major EDA vendors’ offerings to help reduce these risks.
However, this raises a question of if there is a missing piece of the puzzle?

Our intention with this paper is to properly describe this “missing piece” and highlight some of the issues
with current EDA tooling that make it difficult for engineering teams to fill it in. We then propose some
potential solutions that could improve the situation for users and vendors alike.

To explain our motivation, we ask you to consider the software industry and its distinctly different approach
to collaboration and how a more “open” approach is beneficial to everyone involved. Take for example the
incredible communities surrounding GCC [1] and LLVM [2], these two compiler suites dominate the industry
for C and C++ compilation and yet are entirely free and open source. Apple, Qualcomm, and Google, along with
many other well known names, both sponsor and help maintain LLVM [3], and Intel has even shifted their
optimised compilers to use the project [4].

Databases are also comparably complex systems for storing data that need to be both performant and
extremely fault tolerant as they handle important and sensitive information. Up to the early 90s, the space was
dominated by commercial solutions such as Oracle Database [5] (introduced 1979) and Microsoft Sequel Server
[6] (1989). Open source alternatives arrived in the mid-90s with MySQL [7] in 1995 and PostgreSQL [8] in
1996, and now these solutions have taken over the market with PostgreSQL and MySQL having a substantial
lead over both Microsoft and Oracle according to StackOverflow’s 2022 Developer Survey [9].

Our intent with these comparisons is to highlight how open source software is beneficial to engineers, while
still providing vendors plentiful opportunities to market tools and support services that build on such
ecosystems. In our view, existing EDA tooling tends to provide monolithic toolchains that take a
“walled-garden” approach to data management and how they interface with other tools and flows, often relying
on proprietary, unstable and undocumented data formats. We are concerned that this approach is failing to keep
pace with the challenges presented by modern IP and ASIC development.

A methodology frequently touted by the major EDA vendors is the “shift-left” of late issue discovery
[10,11,12] to earlier points in the development cycle, where such issues are generally easier (and cheaper) to fix.
In practice implementing this across a design flow requires the engineering process to work coherently, as it
cannot be fully realised within a single tool’s domain. For example, resolving a clock crossing issue is far easier

1

while the RTL is under active development than at the point it has reached physical layout - but a robust
“shift-left” means that CDC needs to produce a consistent result on both RTL and netlist, with the netlist often
being produced by a tool from a different vendor.

Any engineer involved in design flow development will be familiar with the challenges of tool integration
and data management - problems for which little standardised tooling or methodology exists. In our experience
this has led to companies developing vast webs of bespoke shell, Makefile, Perl, and Python scripts that are
jealously guarded, often by teams who just want to get on with the hardware design task and don’t have the time
to make the most considered decisions. These scripts become critical to the success of each tapeout or delivery,
and yet are often been borne out of urgency without deep consideration for their structure or extensibility. It is
surprising that, unlike other industry wide problems such as testbench design, there isn’t an agreed approach.

In this paper we suggest that the problem is not the tools themselves, but the lack of emphasis on how they
are stitched together. We believe it is this ability to create smooth transitions between stages in a wider flow that
is sorely lacking at present. That is, we recognise building hardware is as much a problem of data management
as it is of microarchitectural design or verification, and our tools should recognise it too. We will also describe
how the existing interfaces to tools make these junctions so difficult, how we unconsciously deal with these
tooling deficiencies (i.e. abstracting them under a mountain of scripting), and what better interfaces should look
like. We will provide a set of concrete recommendations to standards groups which might aid this situation,
allowing for more flexible and innovative EDA solutions.

We acknowledge that in some areas the open source community has already risen to the challenge, for
example Olof Kindgren’s award-winning FuseSoC [13] and Edalize [14] abstract away the difficulties of
assembling and processing IP (from the Edalize Readme: “[...] all these tools are doing this in completely
different ways and there's generally no way to import configurations from one simulator to another. Dread not!
Edalize takes care of this for you”). We believe that the industry has much to learn from such tools and concepts.

In this paper we will define three tenets that we believe underpin a robust and capable design flow, and
describe how commercial EDA tooling sometimes prevents engineers from achieving these aims as easily as
they could. We explore commonly used solutions and why these are unsuitable for modern ASICs, and discuss
how solutions from other domains might provide inspiration. The paper goes on to explore how the industry and
EDA vendors could help address these issues, and what we propose as a general solution. Finally we discuss
Blockwork, an open source design flow that will address many of the points discussed here, and which we hope
could act as the “missing piece” in all our tool suites.

II. EXPRESSING DESIGN FLOWS AS A GRAPH

A design flow is composed of a series of steps that progressively transform RTL into different forms of
results, be that lint warnings, functional coverage databases, or even the final GDS-II delivery. The number of
such pathways quickly increases as a flow is developed, and the interdependencies quickly become complex.

At a high level a flow can be summarised as being a collection of different sequences, where each sequence
is formed of a series of transformations that each take a number of inputs and produce a number of outputs.
Certain transformations may be common between different sequences, while others may be unique. One way to
express such an assembly is an acyclic graph [15] where transformations are represented by the nodes of the
graph and inputs and outputs by the edges.

Figure 1 shows a simple design flow terminating in lint, coverage merge, and synthesis - in reality there
would be many further transformations, but this suffices as an example. There are six formats of file represented
by edges in the graph (.sv, .sv.mako, .py, .tcl, .exe, and .db), mostly originating from the filesystem but
some are generated by the templating, compilation, and simulation transformations. There are seven types of
transformation, including reading from the filesystem as represented by an identity transform [16].

2

Figure 1: A simple design flow expressed as a graph

This example shows only the minimal steps in a silicon design flow, and yet the complexity of passing
information between tools is already apparent. As a design flow is developed the depth, complexity, and
interconnectedness of the graph only ever increases. If incorrectly structured, this quickly becomes difficult to
manage and dependencies of any particular step become hard to discern. If there is no confidence in dependency
tracking, the only way to be sure of a result is to re-run the entire graph, which quickly becomes expensive.

III. THREE TENETS OF SILICON DESIGN

To try and frame the complexity of this problem more concretely, we introduce our three tenets of silicon
design: traceability, modularity and reproducibility. In this section we will discuss each of these terms and show
how current EDA tooling fails to meet these goals, and how effort is currently spent on filling this gap.

Traceability

Traceability allows us to know the provenance of any particular engineering artefact at any stage of the
silicon design process. Without this, we don’t know what we’re building, whether we delivered the right version
of the RTL to the physical design team, or sent the right GDS file to be manufactured. Being able to trace the
complete set of input and intermediate artefacts used to produce any given output (which itself will likely be an
input to another step) is essential to our notion of traceability. We call this referential traceability.

Because chip design is a process spread across time, it is also essential to know the version of inputs fed
into each transform. This requires some way of tagging artefacts (inputs or outputs from transforms) with
information from the version control system (Perforce, Git, SVN) being used. In a simple project, this level of
traceability might be realised simply by checking out the project code at a single version and running the entire
implementation flow. In a larger project, with multiple deliveries of sub-components feeding into a larger
system, possibly across different version control systems or even companies, tracing the version of a component
quickly becomes more complicated. We call the tracing of artefact versions across time temporal traceability.

Being confident in the provenance of a given artefact requires trusting how operations are traced -
maintaining a link to the underlying version control system for as long as possible provides a very strong
reference, that we believe is essential. Other less robust schemes, such as encoding a version number in a
filename or text file, provide opportunities for accidental or even malicious substitutions to be made, the latter
being critical when securing a supply chain. Building such a capability into a build system means that
traceability is inherent, rather than relying on process and discipline.

In our experience, current EDA tooling (somewhat understandably) does not engage with these
requirements. Vendors generally focus on addressing individual steps of the silicon design process (simulation,
synthesis, linting, DFT insertion, etc) rather than the more abstract problem of tracing and managing the
artefacts between these stages. It is also a much more difficult tool to build (or, product to sell), because it will
necessarily be opinionated about how each transformation in the design process is composed and the form of
artefacts passed between them. As a result, companies build their own ad hoc management systems, and suffer

3

the burden of their maintenance. Engineers moving from one company to another must become familiar with yet
another bespoke set of tools that achieve exactly the same aim as those at their previous company, but in a
different way. The industry should recognise this situation as similar to how UVM introduced a standardised
approach to functional verification.

Modularity

Modularity refers to being able to compose transform steps easily and correctly. Recalling our model of
silicon design as a series of transformations on build artefacts, we want a way to express this chain of
transformations, and ensure that each intermediate artefact in the chain of transformations is of the right type.

This is similar to what a standard Makefile does. Indeed, we often see engineers trying to solve this problem
with Makefiles, before realising that it doesn’t quite provide what’s needed and resorting to Python or Perl
instead. For example, imagine a high level process for collecting code coverage from a block using a UVM
testbench as shown in figure 2 - there are several vendor agnostic steps involved:

Figure 2: A simple flow for code coverage collection

This set of steps should be familiar to any verification engineer, or designer who’s suffered the manual
waiver creation process. Every EDA vendor has a particular implementation of this process with tools to support
each particular step, and the overarching flow is implemented in a different way at every company.

Additionally, because each step often produces outputs in a format shared by no other tool (possibly with no
other tool from the same vendor), considerable effort is often spent writing scripts to parse, process and
transform these tool specific outputs into something which can be used for the next transformation in the
process. For example, there is no good reason that coverage waivers cannot be vendor agnostic. The information
needed to create a coverage waiver relates to the design and is not tool or vendor specific, yet every tool
(whether commercial or open source) has a unique way of specifying them. Companies that want a single source
of truth for coverage, lint, or other waiver must spend effort creating a vendor agnostic representation and then
transforming that into the vendor specific representation. Is it too much to ask to have one agreed way to do
this? We think not.

4

Reproducibility

Reproducibility ensures that a design flow run by engineer A on Monday on machine X will work
identically for engineer B on Friday on machine Y. In other words, every process should be deterministic,
producing the same output for the same inputs with all of those inputs under the explicit control of the engineer.

The problem does not just stop with explicit inputs to a particular process, script or EDA tool. Often,
reproducibility extends to the entire operating environment for a design flow, including the Operating System,
standard libraries, environment variables and in some cases even specific hardware to run on. This leads to very
conservative development environments, where changes to any of the tool versions requires extensive testing
and coordination. It’s also essential that the same environment can be exactly recreated months or even years
later when debugging or re-creating an issue seen in a manufactured device. EDA vendors currently specify the
environment in text description and rely on the user to recreate it, meaning that companies must bear the cost of
qualifying the environment each time they install or update a tool.

IV. WHY DOES CURRENT TOOLING FALL SHORT?

The inherent risk involved in silicon tapeouts means that the industry is generally conservative in adopting
the latest tools and trends and, given the costs involved, this is understandable. Vendors are aware that
customers can be extremely reluctant to adopt new or significantly updated products, meaning that tool
interfaces generally change in slow and predictable ways to give users time to adapt.

The major vendors market products that address mostly the same market segments, with subtle differences
in capabilities or performance. In general, what is possible with one vendor is possible with another. It would,
therefore, seem possible for standardised command line and scripting interfaces to exist. However, vendors may
view their interfaces as superior to the competition, and a key selling point to their customers. In truth the
differences are often sources of confusion and frustration, and provide a barrier to adopting a better solution.
Searching for the “magic flag” which makes the entire flow work is not an experience anyone enjoys.

Non-Disclosure Agreements (NDAs) between vendors and their customers also provide a significant hurdle
to any collaboration or knowledge sharing between companies, as the terms often prohibit any sharing of
command line flags and switches, with documentation hidden within paywalled support sites. This means that
companies must obscure the most useful details of their flows when sharing them publicly, meaning others must
discover the same pitfalls for themselves. One only needs to consider the utility of StackOverflow to understand
the importance of community surrounding a product, and the current NDAs prevent this from blossoming.

As projects become increasingly complicated, tool interfaces that are predominantly designed for human
interaction and not for automation quickly become problematic. Inputs, outputs, and control are provided in
proprietary formats that differ significantly not only between vendors but also between products from the same
vendor. Such formats are generally not documented, and manual or programmatic editing outside of the
vendor’s environment is strongly discouraged. While this approach may not seem problematic in isolation, in
the context of a long and complex design flow it does little to assist the end user. A tool which helps you “shift
left” is no good if you have to spend considerable effort transforming inputs and outputs with custom scripts.

V. CURRENT SOLUTIONS

The lack of standardised interfaces between tools and general difficulty in constructing complex and robust
design flows leads to each company to, at great length and cost, build its own bespoke system that is then as
jealously guarded as the crown jewels. In many cases, even if the organisation was so inclined to publicly share
their flow, the level at which vendor tools pervade the infrastructure would often make it very difficult to expose
without violating an NDA. That said, there are a few examples where individuals or organisations have
successfully shared infrastructure - a few such examples are:

5

● cocotb [17] is a Python framework for writing testbenches that aims to work with every commercial
and open source RTL simulator, with the flow transparently adapting to different simulators;

● SiliconCompiler [18] focuses on automating synthesis and physical layout of designs, predominantly
targeting open source tools (e.g. Yosys) but can be extended to support commercial tools;

● Olof Kindgren’s FuseSoC [13] is a package manager for building hardware from predefined
components while another of Kindgren’s tools, Edalize [14], provides an abstraction layer for
interfacing with various free or opensource tools such as Icarus Verilog [19] and Xilinx Vivado [20].
We note that the sales pitch for Edalize is that it will “save you from having to deal with the boring
stuff of interfacing the EDA tools yourself” (emphasis ours).

While fantastic, each tool only addresses a limited portion of the design, verification, and implementation
process. Discontinuities in workflows are often the source of misunderstandings and frustration, so these tools
will then need to be wrapped in a wider build system such as GNU’s Make [21] or Google’s Bazel [22].
However, from experience the depth and complexity of transformations that need to be applied to a hardware
design are ill-suited to such software-focussed build systems.

For example, an SoC will contain multiple bespoke components each of which needs to be linted, DFT
inserted, simulated, synthesized, equivalence checked, and more. Many of these tasks then need to be re-run
when moving up the hierarchy to the top of the chip, taking different sections and configurations of the design.
This quickly leads to an explosion in the number of pathways and artefacts being managed.

An interesting comparison to make is with data engineering tools such as Apache’s Airflow [23] or
Elementl’s Dagster [24] that orchestrate deep and complex pipelines of transformations, routing artefacts
between steps. There are well documented APIs for stages and pipelines and standardised formats for artefacts.
However, such tools are intended for processing continually streamed analytics data, for example spotting trends
in customer purchases. These tools expect data pipelines to run continuously on a server, rather than on demand.

There are important lessons to take away from both build systems and data engineering tools, and for EDA
workflows a hybrid of the two that takes the interactive and on-demand nature of a build system with the ease of
pipelining of a data engineering tool could be incredibly powerful.

VI. WHAT SHOULD WE AIM FOR?

Every transform must be traceable, reproducible, and modular, and the relationship between inputs and
outputs must be well understood. All artefacts should be serialisable and ideally vendor agnostic, although some
files (for example compiled simulation binaries) will remain inherently vendor specific.

Similarly, the interfaces to invoke tools should conform to agreed standards. For example many tools will
read in a netlist with search paths and defines, where subtle differences between tools frequently catch users out.
Tools operating in the same domain (e.g. simulation, formal proof, synthesis) could conform to a standard
interface for specifying constraints, libraries to load, and so forth. With such changes, a user could be confident
that infrastructure developed for one vendor would port to another with minimal effort.

However, these changes are not subtle and would require vendors to agree on common standards. Even if
this is possible, it is unlikely to be a rapid decision with a long tail of transition. Therefore this leads us to the
question of what we can do today that moves us closer to these goals?

Few, if any, existing build systems address the complexity of a modern ASIC and so something new is
required. A perfectly capable flow can be built for a single IP using GNU Make, but scaling up to an ASIC
constructed from internal and third party components often leads to custom layers being progressively added.
An ideal tool would make it trivial to manage complex, reusable, and interconnected pipelines of
transformations. This is not a trivial effort and the result could be of benefit to the whole industry. Sharing such
a tool would allow for community adoption and contributions, rather than each company reinventing the wheel.

6

Tools should be encapsulated such that they run in their ‘ideal’ environment and, as far as possible,
interface with preceding and successive transformations using standard, non-vendor specific formats. Inputs and
outputs from each tool invocation should be strongly defined, so that dependencies can be traced throughout the
build graph. The flow should be explicitly aware of supporting tools and libraries from the environment, and
those that have not been specified should be obscured from the transformation (i.e. if a tool only requests Perl,
then it may not call Python). This will achieve the properties of traceability and reproducibility, providing that
the tool itself is deterministic given constant inputs. Modularity would require ‘specialisation’ and
‘normalisation’ layers before and after the tool is invoked to transform to and from vendor-specific formats.

EDA vendors should support the industry by allowing integrations of their tools with build systems to be
shared publicly - this would require the relaxation of NDAs. This would lower frustration for the customer and
allow them to become productive faster, while the vendor’s support burden could be reduced as there will be
fewer questions on how to get a tool running. In an ideal world, vendors would maintain the tool integrations
into the build orchestrator themselves so that “best practice” is guaranteed. Vendors should also make sure that
their inputs and outputs are easily machine readable, with the formats well documented.

Industry engagement is essential to convince vendors that this will be beneficial for both them and their
customers. We believe this should be an open discussion, with companies contributing their feedback, criticism,
and time to develop these shared standards. We are an industry upon which modern infrastructure and
livelihoods are built. We solve some of the most difficult engineering challenges on earth. Standardised data
formats and consistent command line arguments should not be too much for us as an industry to deliver.

VII. A CONCRETE IMPLEMENTATION: BLOCKWORK

Blockwork is a free and open source build system built to tackle the complexity of designing, verifying, and
implementing a modern ASIC comprising many different components. While extremely flexible, the tool also
offers a recommended methodology on structuring a hardware repository and its flow - for example:

● Hardware development throughout design, verification, and physical implementation should be
managed in a single monolithic repository - numerous articles [25,26] document the benefits.

● The OS, supporting software libraries, and tool versions must be under the flow’s control so that the
build “environment” is always well understood.

● Flow orchestration should be implemented in few languages with configuration separated from
execution. In Blockwork’s case configuration is specified in YAML and execution is coded in Python.

Blockwork isolates the build environment from the host machine using containerisation. It is built around
the Docker API [27] and is compatible with container runtimes including Docker and Podman. The
“foundation” container image is based on Rocky Linux 9, with minimal packages installed into the OS itself.
Tool binaries are selectively “bound-in” from the host based on the activity being performed, for example a
transformation may request only GCC and GNU Make. The tool may also modify the shell environment, for
example extending $PATH.

Isolation is also used to selectively bind context-specific files and folders from the host system - for
example if a project has two independent IPs, acme_cpu and acme_dma, then when an engineer simulates
acme_cpu the files for acme_dma are completely inaccessible. This operates at a fine granularity, meaning that
different activities on the same top-level can only access files that they request in advance. This leads to strict
enforcement of dependencies, thus increasing confidence in the traceability and reproducibility of any given
transformation. When transformations are chained together, outputs from one stage can be automatically
bound-in as inputs to the next.

Containerisation is used to ‘normalise’ the file system. For example, sections of the repository will be
bound (read-only) to paths under /project based on activity, while tools are bound under /tools, and work is

7

performed under /scratch. This isolates activities from the exact configuration of the host, allowing an
engineer’s laptop and a server farm to appear identical aside from compute performance. As a side benefit, this
means if a third party tool encodes an absolute path into an output, consecutive steps can then be run on
anywhere by anyone without updates.

A bw command offers a common entrypoint for launching builds, running tools, or even ‘bootstrapping’ the
workspace. Detailed documentation [28] explains each command and what they are doing under the hood, for
example the following command opens a wave viewer to explore a VCD:

$> bw tool gtkwave.view ../hardware.scratch/acme_cpu/sim/waves.vcd

Blockwork is under rapid development with the current focus on defining a syntax for constructing the
complex pipelines for lint, verification, synthesis, and ultimately delivery of a design to GDS-II. The project is
open source on GitHub (github.com/blockwork-eda/blockwork) and welcomes feedback and contributions.

VIII. CONCLUSIONS

Our hope is that we inspire vendors and engineers to consider the end-to-end requirements of complex
design flows, and how the tools we use day-to-day could be improved to simplify the task of integration. Our
main desires are that interfaces are standardised, file formats are vendor agnostic and well documented, and the
relationship between inputs and outputs of any tool are strongly defined. We strongly believe that relaxing
NDAs between vendors and customers to an extent that allows tool integrations to be shared would be beneficial
to all parties involved, and is the foundation for establishing common practices and tooling for design flows. We
offer Blockwork as a stepping stone on this road. We believe that it is built on a solid foundation and will
develop over time into a robust and capable build system for even the most complex hardware projects.

REFERENCES

1. Free Software Foundation, Inc., “The GNU Compiler Collection”, gcc.gnu.org last accessed 23/04/2023
2. LLVM Foundation, “The LLVM Compiler Infrastructure Project”, llvm.org last accessed 23/04/2023
3. foundation.llvm.org/docs/sponsors
4. www.intel.com/content/www/us/en/developer/articles/technical/adoption-of-llvm-complete-icx.html
5. Oracle, “Database”, www.oracle.com/uk/database last accessed 23/04/2023
6. Microsoft, “Microsoft Data Platform”, www.microsoft.com/en-us/sql-server last accessed 23/04/2023
7. MySQL, “MySQL”, mysql.com last accessed 20/08/2023
8. PostgreSQL Global Development Group, “PostgreSQL: The World’s Most Advanced Open Source Relational Database”,

www.postgresql.org last accessed 23/04/2023
9. survey.stackoverflow.co/2022#most-popular-technologies-database-prof
10. blogs.sw.siemens.com/xcelerator/2023/01/20/what-is-shift-left/
11. www.cadence.com/en_US/home/company/cadence-academic-network/educators/shift-left-methodology.html
12. www.synopsys.com/automotive/what-is-triple-shift-left.html
13. O. Kindgren, “FuseSoC User Guide”, fusesoc.readthedocs.io/en/stable/user/index.html last accessed 23/04/2023
14. O. Kindgren, “Edalize User Guide”, edalize.readthedocs.io/en/latest/user/index.html last accessed 23/04/2023
15. www.britannica.com/topic/graph-theory
16. Cuemath, “Identity Function”, www.cuemath.com/algebra/identity-function last accessed 21/08/23
17. cocotb, “Python Verification Framework”, www.cocotb.org last accessed 21/08/23
18. SiliconCompiler, “Compile code into silicon”, www.siliconcompiler.com last accessed 21/08/23
19. S. Icarus, “Icarus Verilog”, github.com/steveicarus/iverilog last accessed 21/08/23
20. AMD Xilinx, “Vivado ML Overview”, www.xilinx.com/products/design-tools/vivado.html last accessed 21/08/23
21. Free Software Foundation, Inc., “GNU Make”, www.gnu.org/software/make last accessed 21/08/23
22. Google, “Bazel”, bazel.build last accessed 21/08/23
23. The Apache Software Foundation, “Apache Airflow”, airflow.apache.org last accessed 21/08/23
24. Elementl, Inc., “Dagster”, dagster.io last accessed 21/08/23
25. J. Hanlon, “Silicon infrastructure”, www.jameswhanlon.com/silicon-infrastructure.html last accessed 21/08/23
26. D. Luu, “Advantages of monorepos”, danluu.com/monorepo last accessed 21/08/23
27. Docker, Inc., “Develop with Docker Engine API”, docs.docker.com/engine/api last accessed 21/08/23
28. Blockwork EDA, “Blockwork build environment”, blockwork.intuity.io last accessed 21/08/23

8

