
The Three Body Problem
There’s more to building Silicon than EDA currently helps

Peter Birch (Vypercore) & Ben Marshall (PQShield)



What’s the problem?

ARCHITECTURE DESIGN VERIFICATION PHYSICAL MANUFACTURE



What’s the problem?

ARCHITECTURE DESIGN VERIFICATION PHYSICAL MANUFACTURE



What’s the problem?

ARCHITECTURE DESIGN VERIFICATION PHYSICAL MANUFACTURE

PROVENANCE



The Three Bodies

• The ‘big three’ EDA vendors don’t make this easy

• Tools lack common interfaces

• Proprietary inputs and outputs

• Results vary run-to-run

• NDAs stop flows being shared



So what do we do?



Tenets of a^Silicon Engineering Flow

TRACEABLE

SUCCESSFUL



Tenets of a^Silicon Engineering Flow

TRACEABLE MODULAR

SUCCESSFUL



Tenets of a^Silicon Engineering Flow

TRACEABLE MODULAR REPRODUCIBLE

SUCCESSFUL



Pure Functions

(files, pass) = synthesis(files, switches, environment)



Flows are Graphs



Nodes

Icarus Verilog

Verilator

VCS

Xcelium

Questa



Transformations

SIMULATE

SPECIALISE

INVOKE TOOL

NORMALISE

INPUTS OUTPUTS



Interfaces

SIMULATE

SPECIALISE

INVOKE TOOL

NORMALISE

INPUTS OUTPUTS



Interfaces

INPUTS JSON



Interfaces

INPUTS JSON

RELEASES

PARALLEL BUILDS

CHECKPOINTS



Tracking References



Makefiles are not enough

• EDA flows are very complex

• Many inputs and outputs

• Deeply branched trees of transformations

• Software build tools are not well suited



So we need something better…



…we have an answer…



…and it’s open source 🤯





• Tool-agnostic framework

• Written in Python

• Uses Docker to isolate each step

• You bring the tool wrappers, transforms, and flows

• Under active and rapid development by VyperCore

• Inspired by Edalize and FuseSoC

Blockwork



Blockwork



Runs here, there, or anywhere…

DEBUG @
25,000 FT



Blockwork

Please come join in the fun!

github.com/blockwork-eda



In Summary

• A good silicon flow is traceable, modular, and reproducible

• We need better tools!

• Blockwork is tool-agonistic and open source 

• Vendors - please help us:
• Relax NDAs around flows
• Standardised interfaces
• Machine readable inputs and outputs
• Fully reproducible transformations


