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The Three Bodies

• The ‘big three’ EDA vendors don’t make this easy

• Tools lack common interfaces

• Proprietary inputs and outputs

• Results vary run-to-run

• NDAs stop flows being shared



So what do we do?
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Pure Functions

(files, pass) = synthesis(files, switches, environment)



Flows are Graphs



Nodes

Icarus Verilog

Verilator

VCS

Xcelium

Questa
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Tracking References



Makefiles are not enough

• EDA flows are very complex

• Many inputs and outputs

• Deeply branched trees of transformations

• Software build tools are not well suited



So we need something better…



…we have an answer…



…and it’s open source 🤯





• Tool-agnostic framework

• Written in Python

• Uses Docker to isolate each step

• You bring the tool wrappers, transforms, and flows

• Under active and rapid development by VyperCore

• Inspired by Edalize and FuseSoC

Blockwork



Blockwork



Runs here, there, or anywhere…

DEBUG @
25,000 FT



Blockwork

Please come join in the fun!

github.com/blockwork-eda



In Summary

• A good silicon flow is traceable, modular, and reproducible

• We need better tools!

• Blockwork is tool-agonistic and open source 

• Vendors - please help us:
• Relax NDAs around flows
• Standardised interfaces
• Machine readable inputs and outputs
• Fully reproducible transformations


