
Soumak
How	rich	descriptions	enable	early	detection	of	hookup	issues

Peter	Birch	and	Thomas	Brown,	Graphcore



Overview

• Scale	and	complexity	at	Graphcore
• Constructing	subsystems	and	chips
• Existing	solutions
• Goals	in	developing	a	new	solution
• Introduction	to	Soumak
• Shift-left	of	issue	detection



Scale	and	Complexity

• Reticle-scale	die	with	59.4	billion	transistors
• 1,472	instances	of	the	Tile	processor
• Numerous	SERDES	interfaces	for	Ethernet	&	PCIe

• Subsystems	are	complex	and	deeply	hierarchical
• Hundreds	of	components
• Thousands	of	connections
• Many	distinct	signal	types



Constructing	Complex	Subsystems

• Infeasible	in	SV/VHDL	
• Connectivity	is	horrendous
• Thousands	of	connections
• Many	similarly	named	and	sized	signals
• Verbose	syntax

• Chances	of	an	error	are	high
• Lint	can	only	help	so	much
• Exhaustive	simulation	and	formal	proof	infeasible	at	these	scales



Abstractions

• Deeper	hierarchy
• Related	modules	can	be	grouped	together	to	contain	wiring
• Can	lead	to	repetitive	hierarchical	connections

• Use	SV/VHDL	interfaces
• Grouped	signals	reduce	complexity,	lower	chance	of	an	error
• Commercial	tool	support	is	highly	variable

• Describe	connectivity	at	a	higher	level
• Use	another	language	to	describe	(and	automate)	connectivity



Existing	Solutions

• Accelera IP-XACT
• Syntax	focused	on	machine	readability,	not	hand	editing
• EDA	tooling	required	to	generate	RTL
• Tool	APIs	and	reporting	limit	custom	flows

• Alternative	HDLs	like	Chisel	(Scala)	&	Amaranth	(Python)
• Partial	adoption	is	difficult
• Shims	around	SV/VHDL	can	be	painful



Requirements

• Concise	syntax	for	describing	connectivity
• Tight	integration	with	existing	SystemVerilog design
• Support	for:
• Nested	interfaces
• Constants,	typedefs,	and	data	structures
• Topologies	such	as	rings,	chains,	and	meshes

• Early-as-possible	sanity	checks
• Support	for	backends	such	as	code	generation



Workflow

Soumak
.py

DBs

<xml/>

Machine
Readable

Specifications

Soumak

Early
(Declaration)

Checks
Elaboration

Checkers
Unconnected	Ports

Simple	CDC
Unique	Signals

Backends
Code	Generation

Reporting
Design	Explorer

SV

HTML



Defining	a	Leaf	Node

hexcpu.py

hexcpu

clk

rst
fault



Defining	a	Leaf	Node

hexcpu.py

Built-in	primitive
signal	types

Decorators	check	
hardware	definition

on	declaration Decorator	reads	and
checks	the	type	
annotations



Interfaces

jtag.py

JTAG
TCK
TRST
TMS
TDI
TDO



Interfaces

jtag.py

Comments	are	stored
with	each	declaration

Signals	can	travel
with	or	against	the

interface
Base	signal	types	&
other	interfaces	can
be	referenced



Types	&	Constants

hex_package.py

Explicit	values	and
arithmetic	is	fully

supported
Simple	data	types	can
be	declared



Enumerations

hex_package.py

Implicit	or	explicit
value	assignments Supports	indexing,

one-hot,	and	Gray	
coding



Structs	&	Unions

hex_package.py

References	can	be
made	to	enums,

structs,	and	unions



Interfacing	with	SystemVerilog



Subsystem	Assembly

hex_core.py hex_dma.py



Subsystem	Assembly
hex_subsystem

clk
rst
debug

hex_core

clk
rst
debug

dma_req
dma_state

hex_dma

clk
rst
request
state



Subsystem	Assembly
hex_subsystem

clk
rst
debug

hex_core

clk
rst
debug

dma_req
dma_state

hex_dma

clk
rst
request
state



Subsystem	Assembly

all_children is	expanded	during	elaboration,	
allowing	multiple	connections	to	be	formed	with	a	
single	statement



Topologies

• Rings,	chains,	and	meshes	topologies	can	be	
constructed	using	special	‘traits’

• Multiple	complex	connections	can	be	formed	with	
just	a	single	statement

• Design	tracks	which	connection	patterns	have	
been	added

self.nodes.all.inbound expands	in	elaboration	to
create	a	list	of	all	inbound	access	ports



Benefits

• Fewer	connection	statements
• Concise	and	easy	to	audit	code
• Less	chance	of	a	mistake

• Strict	type	checks
• Impossible	to	connect	incompatible	signals	without	an	explicit	cast
• Fewer	lines	of	code	to	audit
• Works	for	single	wires	and	complex	buses



Declaration	Checks



Checks	on	Declarations



Checks	During	Elaboration



Checks	on	the	Assembled	Design



Precise	Sign-offs



Connection	Tracing



Connection	Tracing



Connection	Tracing



Connection	Tracing

0x1000



Summary

• Assembling	reticle	sized	ASICs	is	a	difficult	task
• Soumak abstracts	the	assembly	of	subsystems
• Shared	constants	and	types	softens	boundary	between	tools
• Complex	interface	descriptions	reduces	wiring	verbosity
• Python	can	be	leveraged	to	automate	connectivity

• Rich	descriptions	enable	earlier	checks
• Strict	type	checking	helps	to	reduce	mistakes
• Analysis	flows	can	crawl	through	elaborated	designs
• Checkers	can	flag	gross	issues	early	in	the	design	process


