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Overview

• Scale	and	complexity	at	Graphcore
• Constructing	subsystems	and	chips
• Existing	solutions
• Goals	in	developing	a	new	solution
• Introduction	to	Soumak
• Shift-left	of	issue	detection



Scale	and	Complexity

• Reticle-scale	die	with	59.4	billion	transistors
• 1,472	instances	of	the	Tile	processor
• Numerous	SERDES	interfaces	for	Ethernet	&	PCIe

• Subsystems	are	complex	and	deeply	hierarchical
• Hundreds	of	components
• Thousands	of	connections
• Many	distinct	signal	types



Constructing	Complex	Subsystems

• Infeasible	in	SV/VHDL	
• Connectivity	is	horrendous
• Thousands	of	connections
• Many	similarly	named	and	sized	signals
• Verbose	syntax

• Chances	of	an	error	are	high
• Lint	can	only	help	so	much
• Exhaustive	simulation	and	formal	proof	infeasible	at	these	scales



Abstractions

• Deeper	hierarchy
• Related	modules	can	be	grouped	together	to	contain	wiring
• Can	lead	to	repetitive	hierarchical	connections

• Use	SV/VHDL	interfaces
• Grouped	signals	reduce	complexity,	lower	chance	of	an	error
• Commercial	tool	support	is	highly	variable

• Describe	connectivity	at	a	higher	level
• Use	another	language	to	describe	(and	automate)	connectivity



Existing	Solutions

• Accelera IP-XACT
• Syntax	focused	on	machine	readability,	not	hand	editing
• EDA	tooling	required	to	generate	RTL
• Tool	APIs	and	reporting	limit	custom	flows

• Alternative	HDLs	like	Chisel	(Scala)	&	Amaranth	(Python)
• Partial	adoption	is	difficult
• Shims	around	SV/VHDL	can	be	painful



Requirements

• Concise	syntax	for	describing	connectivity
• Tight	integration	with	existing	SystemVerilog design
• Support	for:
• Nested	interfaces
• Constants,	typedefs,	and	data	structures
• Topologies	such	as	rings,	chains,	and	meshes

• Early-as-possible	sanity	checks
• Support	for	backends	such	as	code	generation
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Defining	a	Leaf	Node
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Defining	a	Leaf	Node
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Interfaces
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Interfaces

jtag.py

Comments	are	stored
with	each	declaration

Signals	can	travel
with	or	against	the

interface
Base	signal	types	&
other	interfaces	can
be	referenced



Types	&	Constants

hex_package.py

Explicit	values	and
arithmetic	is	fully

supported
Simple	data	types	can
be	declared



Enumerations

hex_package.py

Implicit	or	explicit
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coding



Structs	&	Unions
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References	can	be
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structs,	and	unions



Interfacing	with	SystemVerilog



Subsystem	Assembly

hex_core.py hex_dma.py



Subsystem	Assembly
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Subsystem	Assembly

all_children is	expanded	during	elaboration,	
allowing	multiple	connections	to	be	formed	with	a	
single	statement



Topologies

• Rings,	chains,	and	meshes	topologies	can	be	
constructed	using	special	‘traits’

• Multiple	complex	connections	can	be	formed	with	
just	a	single	statement

• Design	tracks	which	connection	patterns	have	
been	added

self.nodes.all.inbound expands	in	elaboration	to
create	a	list	of	all	inbound	access	ports



Benefits

• Fewer	connection	statements
• Concise	and	easy	to	audit	code
• Less	chance	of	a	mistake

• Strict	type	checks
• Impossible	to	connect	incompatible	signals	without	an	explicit	cast
• Fewer	lines	of	code	to	audit
• Works	for	single	wires	and	complex	buses



Declaration	Checks



Checks	on	Declarations



Checks	During	Elaboration



Checks	on	the	Assembled	Design



Precise	Sign-offs



Connection	Tracing



Connection	Tracing



Connection	Tracing



Connection	Tracing
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Summary

• Assembling	reticle	sized	ASICs	is	a	difficult	task
• Soumak abstracts	the	assembly	of	subsystems
• Shared	constants	and	types	softens	boundary	between	tools
• Complex	interface	descriptions	reduces	wiring	verbosity
• Python	can	be	leveraged	to	automate	connectivity

• Rich	descriptions	enable	earlier	checks
• Strict	type	checking	helps	to	reduce	mistakes
• Analysis	flows	can	crawl	through	elaborated	designs
• Checkers	can	flag	gross	issues	early	in	the	design	process


